Bill Hoffman Quality Assurance Engineer Nevada Department of Transportation

May 19th, 2005

Hot Mix Asphalt Research

UNIVERSITY OF NEVADA - RENO

Impact of Construction Variability on Performance

Longitudinal Joint Construction Techniques

Impact of Construction Variability on Performance

Adjusted Mix Components:

Gradation (Sloan & Lockwood Sources)
 Binder Content (AC-20 & 30, PG 64 & 76)
 Air Void Content

Impact of Construction Variability on Performance

Gradations - Low, Medium & High

Percentage Passing the #200 – L= 0%, H=11%
 Percentage Passing # 4 Sieve – L=43%, H=64%
 Medium Matched the Mix Design

Impact of Construction Variability on Performance

Binder Content

6% Below Target
6% Above Target
Mix Design Target

Impact of Construction Variability on Performance

Air Voids (Low, Medium, High)

3% Low
 7% Medium (JMF)
 11% High

Impact of Construction Variability on Performance

#4 Gradation – Low, Medium, High
#200 Gradation – Low, Medium, High
Binder Content – Low, Medium, High
Air Voids – Low, Medium, High

42 Combinations for Each Agg. Source

Impact of Construction Variability on Performance

Performance Analysis Testing

Resilient Modulus (M_r)
 Resistance to Rutting
 Resistance to Fatigue Cracking
 Resistance to Thermal Cracking (Northern Mixes)

Impact of Construction Variability on Performance

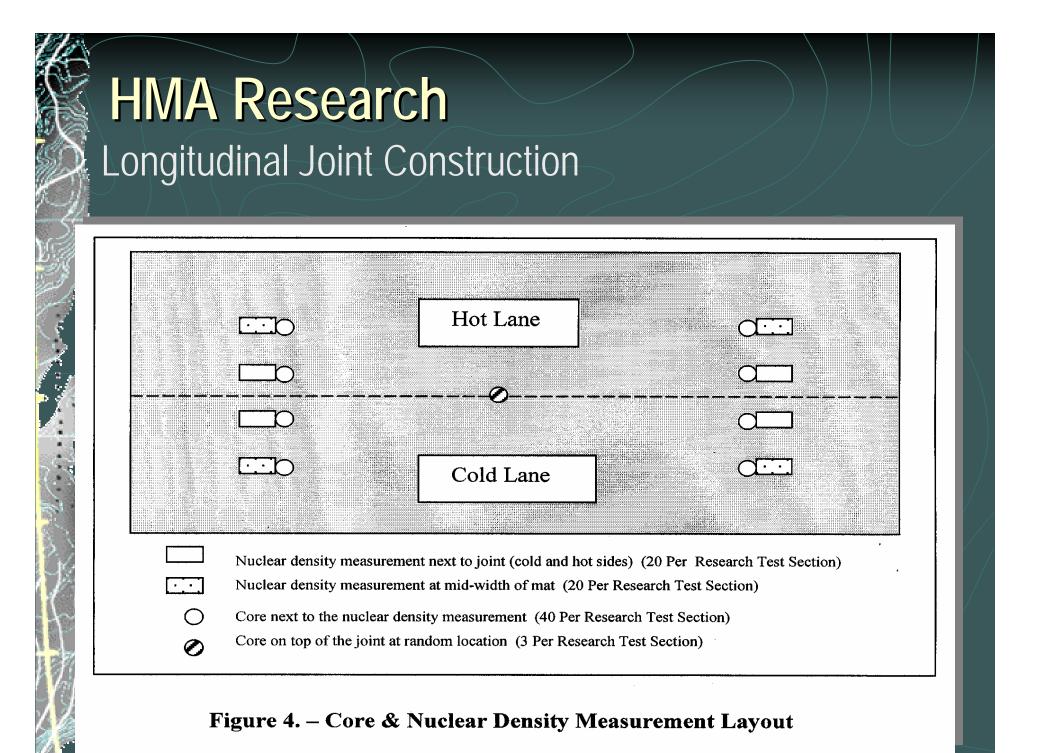
Table 35 Performance Analysis of the Lockwood Aggregate Source.

Violations	Mix ID	General Strength MR	Rutting	Beam Fatigue			TT 1	
				300 µStrain	500 μStrain	800 μStrain	Thermal Cracking	Compaction Observations
Low on # 4-Sieve	LM22	S Lower	NS	S Better	NS	S Worse	NS	
High on # 4-Sieve	HM22	NS	NS	S Better	S Better	S Better	S Better	
High on # 200-Sieve	MH22	NS	S Worse	S Worse	S Worse	S Worse	NS	
Low on Percent AC	MM12	S Higher	NS	S Worse	S Worse	S Worse	NS	
High on Percent AC	MM32	NS	S Worse	NS	S Better	S Better	S Better	
Low on Percent AV	MM21	S Higher	S Better	NS	NS	S Better	S Better	High Compaction Effort – High temp
High on Percent AV	MM23	NS	S Worse	NS	S Worse	S Worse	NS	
Low on # 4 & High on # 200-Sieves	LH22	NS	S Worse	NS	S Worse	S Worse	NS	
High on # 4 & High on # 200-Sieves	ĤH22	S Higher	S Better	NS	S Worse	NS	S Worse	
Low on #4 & Low on Percent AC	LM12	NS	NS	S Worse	S Worse	S Worse	S Worse	
Low on #4 & High on Percent AC	LM32	S Lower	S Worse	NS	S Better	S Better	NS	Minor Compaction
High on #4 & Low on Percent AC	HM12	S Higher	S Better	NS	S Worse	S Worse	S Worse	High Compaction Effort – High temp
High on # 4 & High on Percent AC	HM32	NS	NS	S Better	S Better	S Better	S Better	
Low on #4 & Low on Percent AV	LM21	S Higher	S Better	S Better	S Better	NS	NS	
Low on # 4 & High on Percent AV	LM23	S Lower	S Worse	S Better	S Better	ŃS	NS	Not Compacted – Just Leveled

Impact of Construction Variability on Performance

<u>Results</u>

 81% Chance of Lower Performance if placed outside of Specification Limits (6 years reduced service life)
 High % Passing #200 Always Perf. Worse than "MD"
 Low Binder Content Always Perf. Worse than "MD"


HMA Research Longitudinal Joint Construction

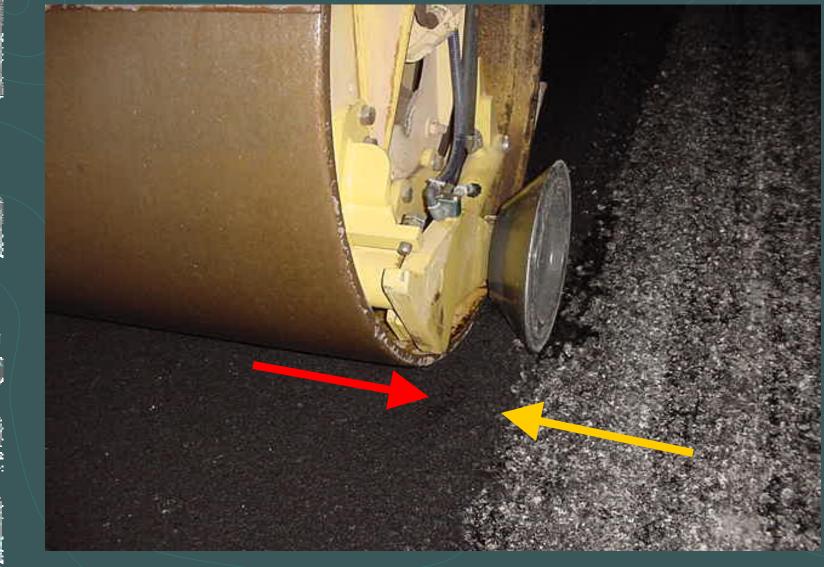
Longitudinal Joint Construction

US 395 Washoe Valley

5 – Joint Construction Techniques
 2 – Rolling Patterns
 10 – Test Sections

Longitudinal Joint Construction

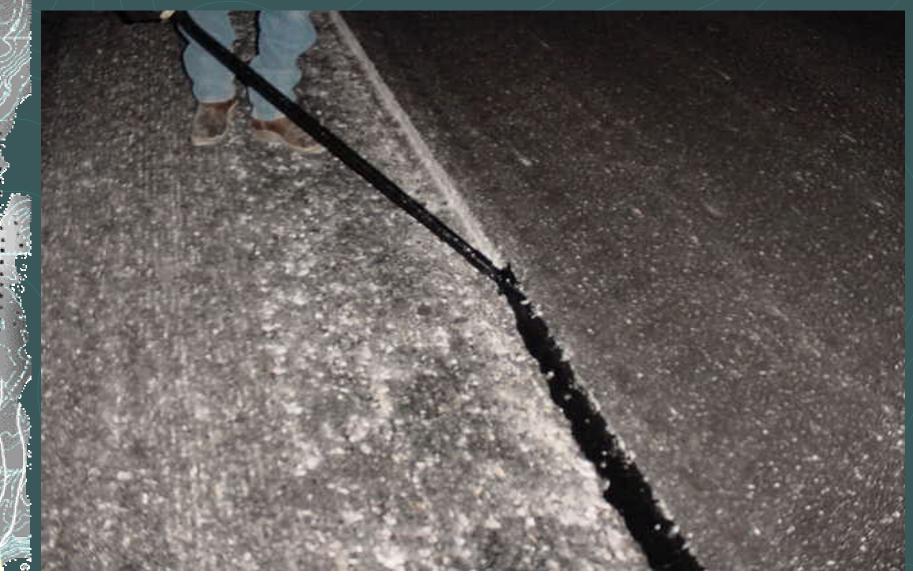
Joint Construction Techniques


- 1. Natural Slope
- 2. Edge Restraining Device
- 3. Cut Edge with Joint Adhesive
- 4. Cut Edge Without Joint Adhesive
- 5. 3:1 Paved Slope Edge

Longitudinal Joint Construction

Joint Construction Techniques

- 1. Natural Slope
- 2. Edge Restraining Device
- 3. Cut Edge with Joint Adhesive
- 4. Cut Edge Without Joint Adhesive
- 5. 3:1 Paved Slope Edge


HMA Research EDGE RESTRAINING DEVICE

Longitudinal Joint Construction

Joint Construction Techniques
 Natural Slope
 Edge Restraining Device
 Cut Edge with Joint Adhesive
 Cut Edge Without Joint Adhesive
 3:1 Paved Slope Edge

HMA Research Cut Edge W / Joint Adhesive

Longitudinal Joint Construction

Joint Construction Techniques

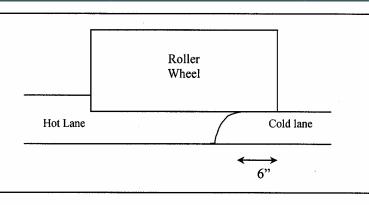
- . Natural Slope
- 2. Edge Restraining Device
- 3. Cut Edge with Joint Adhesive
- 4. Cut Edge Without Joint Adhesive
- 5. 3:1 Paved Slope Edge

Longitudinal Joint Construction

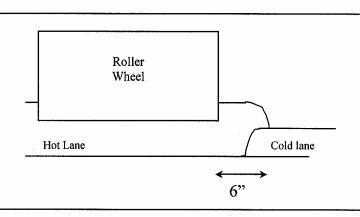
Joint Construction Techniques
 Natural Slope
 Edge Restraining Device
 Cut Edge with Joint Adhesive
 Cut Edge Without Joint Adhesive
 3:1 Paved Slope Edge

HMA Research 3:1 Slope / Fabricated Plate

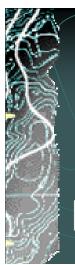
HMA Research 3:1 Slope



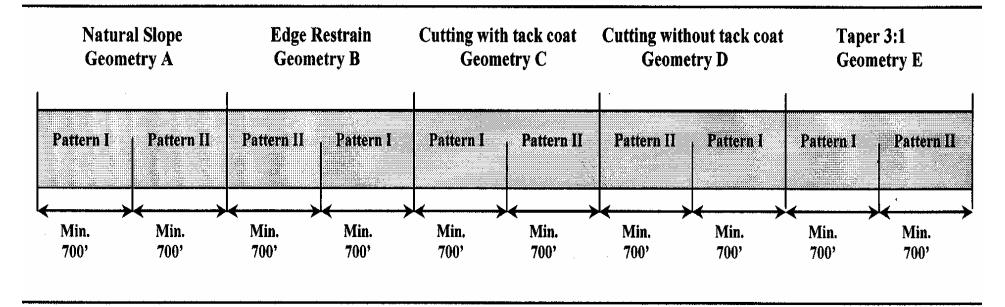
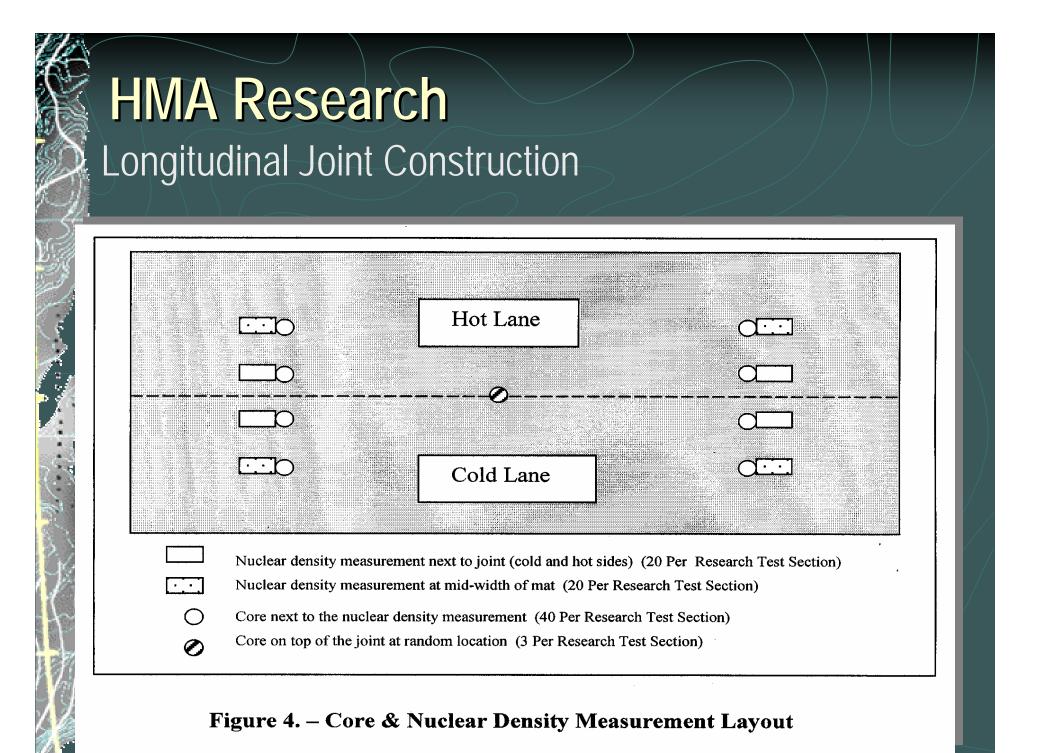
Longitudinal Joint Construction

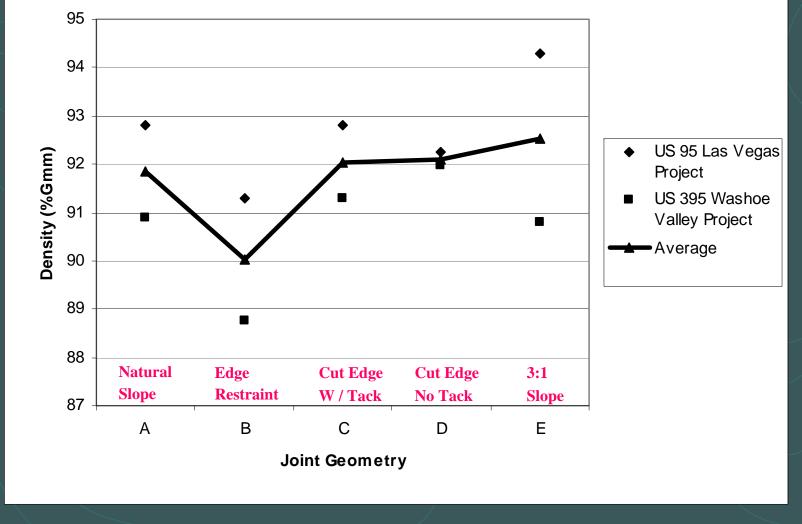

Joint Rolling Pattern Techniques

Overlap Drum 6" onto Cold Mat
 Roller Drum 6" Away From Joint


HMA Research Longitudinal Joint Construction

Longitudinal Joint Construction


Figure 1: Layout of Test Sections

Longitudinal Joint Construction

Longitudinal Joint Construction

Minimal Difference Between Roller Patterns

- . 3:1 Sloped Edge Showed <u>Greatest</u> Density Results
- 2. Cut Edge Showed <u>2nd Highest</u> Densities
- 3. Natural Slope Had <u>3rd Highest</u> Density Values

Final Research Project to be Performed This Summer

QUESTIONS ?

