

Presented by: Thomas Van Dam, NCE Assisted by: Darin Tedford, Michele Maher, Kelly Yokotake, and Troy Olson from NVDOT

"There are no problems, only solutions..."

Issues Identified

- Flexural strength
- Bridge deck cracking
- Shrinkage
- Durability
- Concrete pavements in an urban environment

Flexural Strength Issues

- Nationally, it is common to achieve concrete flexural strengths in excess of 700 psi with 500 lbs/yd³ or less total cementitious
 - Accomplished through optimized gradations in which three or more aggregates blended
 - TX, IL, MI, CA, UT are examples
- Such flexural strengths are achievable in Southern NV but difficult to achieve in the North

On Average (Recent Projects)

Parameter	Northern NV	Southern NV	Percent Difference
Cementitious Content	698 lbs/yd3	642 lbs/yd3	+ 8.0%
w/cm	0.39	0.41	-5.0%
7-day Flexural Strength	583 psi	566 psi	+2.9%
28-day Flexural Strength	665 psi	779 psi	-17.1%
7-day Compressive Strength	4066 psi	4102 psi	-0.1%
28-day Compressive Strength	5309 psi	5996 psi	-12.9%

Note that most Southern NV mixtures are air entrained as are all of the mixtures in Northern NV

As Delivered

After Washing

Flexural Strength Issues

- High cementitious contents needed to obtain desired strength
 - 658 lbs or more cementitious results in less durability, higher shrinkage, and poor economy
- Preliminary investigations underway to:
 - Identify the cause(s) of the problem
 - Develop cost effective solutions

Bridge Deck Cracking

- High-performance concrete (HPC) bridge decks possess properties designed to extend life
 - Higher strength
 - Lower permeability
- Unfortunately, HPC typically has higher shrinkage and is more brittle than conventional concrete
- This results in increased tendency for uncontrolled early-age restraint cracking

NDOT Practice

- Currently, NDOT employs Special Provisions on a project by project basis for bridge decks
 - Trends are towards reduced cementitious content (minimum total cementitious as low as 564 lbs/yd³
 - Optimized aggregate grading
 - Increased use of SCMs
 - Additional testing including stiffness and rapid chloride permeability testing
 - Ten days of wet curing

04/08/2015 10:35

INCE

Mitigation Strategies

Improved concrete mixtures

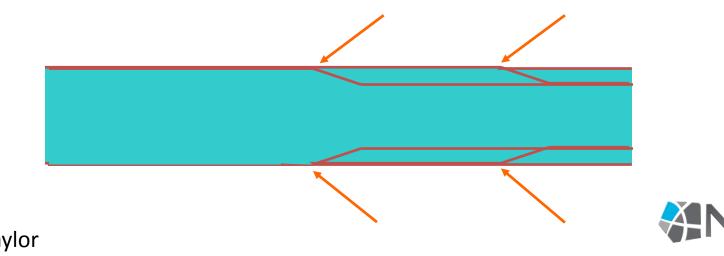
- Reduced cementitious content
- Shrinkage reducing admixtures
- Internal curing using saturated lightweight aggregate
- Macro synthetic fibers

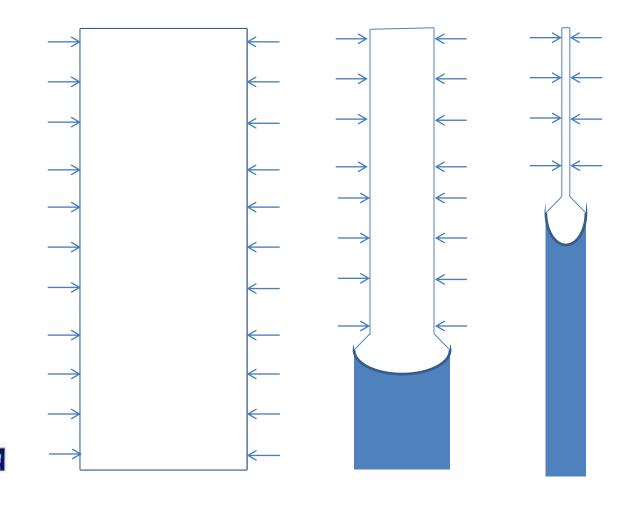
Extended wet curing

- Limited effectiveness as w/cm drops and/or silica fume is used
- Corrosion inhibitors or corrosion resistant reinforcement

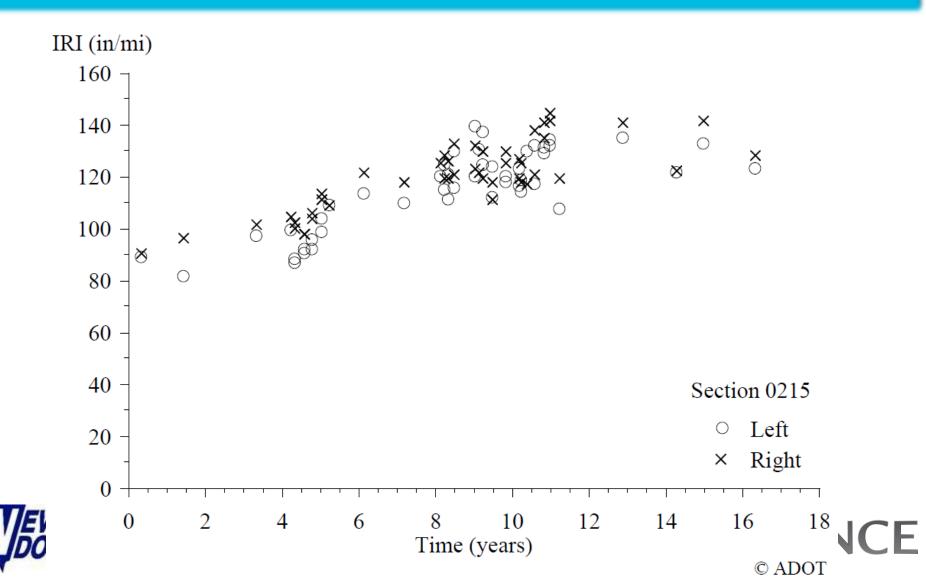
NDOT has initiated a study to investigate options

Issue: Drying Shrinkage

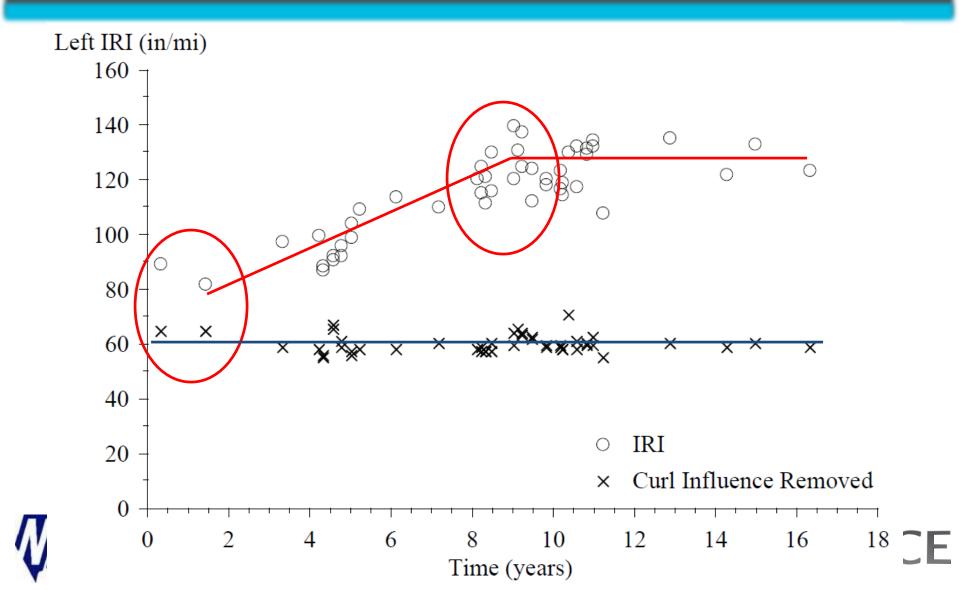

- Loss of mixing water over time due primarily to evaporation from exposed surfaces
 - Volume contracts
 - Greater paste content results in greater drying shrinkage and higher tensile stress when restrained
 - Initiates once surface dries
- For slabs, shrinkage occurs at surface
 - Bottom remains near or at saturation
- Shrinkage influenced by capillary porosity


Capillary Pores

- Volume related to volume of mix water
- Influences permeability and strength
- Sary in size from 0.01 μm to 5 μm
- Menisci pull against void walls at air/water interface


Capillary Pores, Drying Rate, and Magnitude of Shrinkage

50% rH



IRI Progression for AZ SPS-2 Section 040215

IRI Progression (Section 040215)

How Do We Mitigate Effects of Shrinkage?

- Reduced cement content
 - Less cement paste, less shrinkage, less warping

🗱 Internal curing

- Appears to reduce shrinkage but long-term effects not established
- Shrinkage reducing admixtures
 - Adds 20% to the cost of concrete
- Shorter joint spacing
- Diamond grind more often

Durability

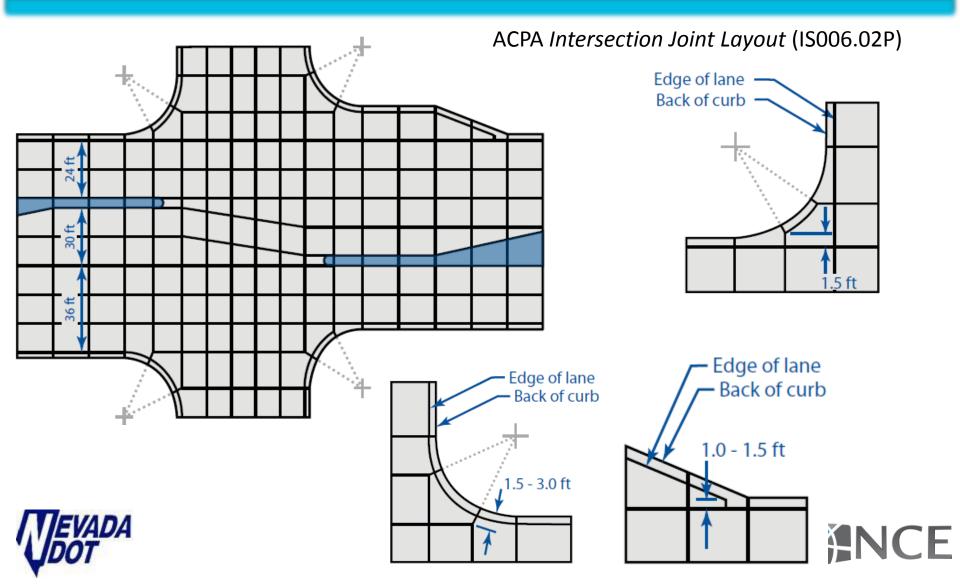
In Northern NV, F-T and deicer use is important

- Air entrainment, durable paste, and good finishing and curing
- Brine deicers are a game-changer
- Alkali-silica reactivity remains an issue
 - Specifications are largely perscriptive
 - Must monitor effectiveness of pozzolans to mitigate
 - Work continues on test method development

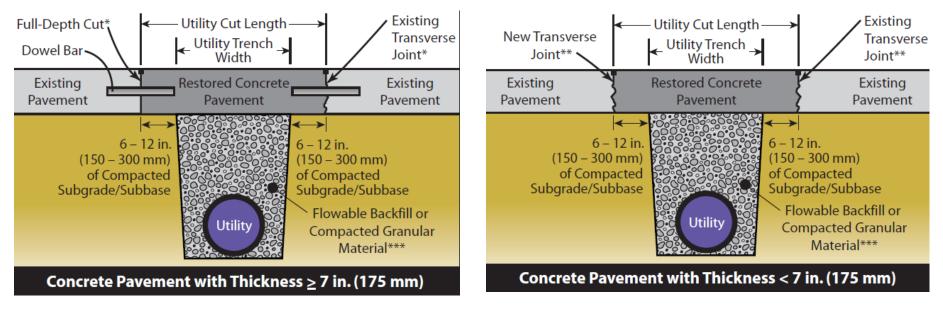
Concrete Pavements in an Urban Environment

- Concrete pavements are known for long life, being relatively maintenance free, and adsorbing less solar radiation
- Maintenance of traffic during construction can be an issue, especially in busy urban corridors
- Jointing is critically important
- Utility cuts can also compromise performance

Maintenance of Traffic


Early-opening-to-traffic materials

- Moderate high-early strength (24 hour opening)
- Rapid set cement (open in an hour)
- Precast concrete pavement
- Careful construction staging
- Minimal equipment clearances
- Manage opening times using maturity methods


Joint Layout - Intersection

Utility Repairs

Care should be exercised when repairing utility cuts

This is true regardless of pavement type

ACPA Utility Cuts in Concrete Pavements (IS235P)

Summary

In Nevada, we have issues...but nothing that cannot be solved

- The environment is challenging
- The materials could be better
- Shrinkage-related problems exist
 - Bridge deck cracking and slab warping
- Durability should not be taken for granted
- Constructing concrete pavements in an urban environment poses new, but manageable, issues

